Erdészettudományi Közlemények / 10. évfolyam / 1. szám / 17-27. oldal
előző | következő

Faanyagok hővezetési tulajdonságainak változása a termikus kezelés hatására

Börcsök Zoltán és Pásztory Zoltán

Kapcsolat a szerzőkkel

Levelező szerző: Börcsök Zoltán

Cím: H-9400 Sopron, Bajcsy-Zs. u. 4.

e-mail cím: borcsok.zoltan[at]uni-sopron.hu

Kivonat

Kutatásunk célja a különböző időtartamú hőkezelés és néhány fizikai, valamint a hővezetési tulajdonságok közötti összefüggések detektálása. A vizsgálatok során lucfenyő (Picea abies), Pannónia nyár (Populus × euramericana cv. Pannónia) és gumifa (Hevea brasiliensis) faanyagot 180 °C-on 15, 25 és 35 órás hőkezelésnek vetettünk alá. Méréseink igazolták, hogy a hőkezelt anyagból készült próbatestek egyensúlyi fanedvessége, sűrűsége és hővezetési tényezője alacsonyabb, mint a kezeletlen mintadaraboké. Az átlagos nettó egyensúlyi nedvességtartalom a kezdeti 12% körüli értékről mind a három fafaj, mindhárom kezelési idejében 6% körüli értékre csökkent. A sűrűség csökkenése 15, 25, illetve 35 órányi kezelés után nyár esetében rendre 9,1, 12,1, illetve 13,4%, lucnál 5,2, 7,6 és 8,7%, gumifánál pedig 3,5, 5,1 és 7,1%. A sűrűség csökkenése 15, 25, illetve 35 órányi kezelés után nyár esetében rendre 17,0, 24,2, 25,2%, lucnál; 8,5, 11,6, 19,2%, gumifánál pedig 3,6, 4,1, és 8,0%. Irodalmi adatokkal alátámasztható, hogy a hőkezelés által a faanyag egyensúlyi fanedvessége és sűrűsége csökken, mely magyarázza az alacsonyabb hővezetési tényezőt az azonos alapanyagból készült kontroll mintadarabhoz képest.

Kulcsszavak: hőkezelés, faanyag, hővezetés, sűrűség, egyensúlyi fanedvesség

  • Balsiger J., Bahdon J. & Whiteman A. 2000: The utilization, processing and demand for rubberwood as a source of wood supply. Asia-Pacific Forestry Sector Outlook Study, Working Paper No: APFSOS/WP/50. Asia-Pacific Forestry Commission, Workplan Number E24.2.
  • Bosshard H., 1984: Holzkunde Bd.3, Aspekte der Holzbearbeitung és Holzverwertung. Brikhäuser Verlag, Basel.
  • Boonstra M. & Tjeerdsma B. 2006: Chemical analysis of heat treated softwoods. Holz- und Roh Werkstoffe 64: 204–211. DOI: 10.1007/s00107-005-0078-4
  • Burmester A. 1973: Einfluss einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz als Roh- und Werkstoff 31: 237–243. DOI: 10.1007/BF02607268
  • Burmester A. 1974a: Erfolgreiche Quellungs-Vergütung mit einfachen Mitteln (1) – Die Wärme-Druck-Behandlung – ein Verfahren mit guten Voraussetzungen für eine Realisierung. Holz- und Kunststoffverarbeitung 8/74: 534–538
  • Burmester A. 1974b: Erfolgreiche Quellungsvergütung mit einfachen Mitteln (2) – Die Wärme-Druck-Behandlung von Holzwerkstoffen-technische Durchführung Wirtschaftlichkeit. Holz- und Kunststoffverarbeitung 8/74: 610–615
  • Čabalová I., Kačík F., Lagaňa R., Výbohová E., Bubeníková T., Čaňová I. & Ďurkovič J. 2018: Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources 13(1): 157–170.
  • Chaouch M., Pétrissans M., Pétrissans A. & Gérardin P. 2010: Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polymer Degradation and Stability 95: 2255–2259. DOI: 10.1016/j.polymdegradstab.2010.09.010
  • Esteves B.M. & Periera H.M. 2009: Wood modification by heat treatment: a review. BioResources 4(1): 370–404. DOI: 10.15376/biores.4.1.370-404
  • Fengel D., 1966: Thermisch und mechanisch bedingte Strukturänderungen bei Fichtenholz. Holz als Roh- und Werkstoff 24: 529–536 DOI: 10.1007/BF02610356
  • Fengel D. & Wegener G., 1989: Wood – Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin
  • Giebeler E. 1983: Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme/Druck-Behandlung. Holz Roh- Werkstoff 41:87–94. DOI: 10.1007/BF02608498
  • Grønli M.G. 1996: Theoretical and experimental study of the thermal degradation of biomass. PhD dissertation. Norwegian University on Science and Technology, Faculty of Mechanical Engineering, Department of Thermal Energy and Hydropower, Trondheim, Norway
  • Gündüz G., Niemz P. & Aydemir D. 2008: Changes in specific gravity and equilibrium moisture content in heat-treated Fir (Abies nordmanniana subsp. bornmülleriana Mattf.) wood. Drying Technology: An International Journal 26(9): 1135–1139. DOI: 10.1080/07373930802266207
  • Hanhijärvi A., Wahl P., Räsänen J. & Silvennoinen R., 2003: Observation of development of microcracks on wood surface caused by drying stress. Holzforschung 57: 561–565. DOI: 10.1515/HF.2003.083
  • Hill C.A.S. 2006: Wood modification: Chemical, thermal and other processes. InWood modification; Stevens, C.V., Ed.; JohnWiley & Sons: Hoboken, NJ, USA. Volume 5, pp. 99–127.
  • Hillis W.E. 1984: High temperature and chemical effects on wood stability. Wood Science and Technology 18: 281–293 DOI: 10.1007/BF00353364
  • Hinterstoisser B., Schwanninge M., Stefke B.; Stingl R. & Patzelt M. 2003: Surface analyses of chemically and thermally modified wood by FT-NIR. In The 1st European Conference on Wood Modification Proceedings of the First International Conference of the European Society for Wood Mechanics; van Acker, J.; Hill, C. (eds): Ghent, Belgium, April 2–4, 2003; 65–70.
  • Homan W., Tjeerdsma B., Beckers E. & Joressan A. 2000: Structural and other properties of modified wood. Congress WCTE 2000, 1, 18–35.
  • Isebrands J.G. & Richardson J. (eds) 2014: Poplars and willows: trees for society and the environment. ISBN 978-1-78064-108-9 (co publisher FAO)
  • ITTO 2009: Encouraging industrial forest plantations in the tropics. International Tropical Timber Organization, Yokohama
  • Jämsä S. & Viitaniemi P. 1998: Heat treatment of wood. Better durability without chemicals. Nordiske Trebeskyttelsesdager 47–51
  • Jämsä S. & Viitaniemi P. 2001: Heat treatment of wood – Better durability without chemicals. In: Review on heat treatments of wood. Proceedings of the special seminar on heat treatments. 09.02.2001 in Antibes. 17–22.
  • Junghans K., Niemz P. & Bächle F. 2005: Untersuchungen zum Einfluss der thermischen Vergütung auf die Porosität von Fichtenholz. Holz als Rohund Werkstoff 63: 243–244. DOI: 10.1007/s00107-004-0553-3
  • Kačik F., Ďurkovič J. & Kačiková D. 2012: Chemical profiles of wood components of poplar clones for their energy utilization. Energies 5: 5243–5256. DOI: 10.3390/en5125243
  • Killmann W. & Hong L.T. 2000: Rubberwood – the success of an agricultural by-product. Unasylva 51: 66–72.
  • Klose W. & Schinkel A. 2002: Measurement and modelling of the development of pore size distribution of wood during pyrolysis. Fuel Processing Technology 77–78: 459–466. DOI: 10.1016/S0378-3820(02)00082-6
  • Kol Ş.H. 2009a: The transverse thermal conductivity coefficients of some hardwood species grown in Turkey. Forest Products Journal 59(10): 60–64. DOI: 10.13073/0015-7473-59.10.58
  • Kol Ş.H. 2009b: Thermal and dielectric properties of Pine wood in transverse direction. BioResources 4(4): 1663–1669. DOI: 10.15376/biores.4.4.1663-1669
  • Kol Ş.H. & Altun S. 2009: Effect of some chemicals on thermal conductivity of impregnated laminated veneer lumbers bonded with poly(vinyl acetate) and melamine-formaldehyde Adhesives. Drying Technology 27: 1010–1016. DOI: 10.1080/07373930902905092
  • Kol Ş.H., Uysal B., Kurt Ş. & Ozcan C. 2010: Thermal conductivity of oak impregnated with some chemicals and finished. BioResources 5(2): 545–555.
  • Kol Ş.H. & Sefil Y. 2011: The thermal conductivity of fir and beech wood heat treated at 170, 180, 190, 200, and 212°C. Journal of Applied Polymer Science 121(4): 2473–2480. DOI: 10.1002/app.33885
  • Kollmann F. & Schneider A. 1958: Einrichtung zur praxisnahen und wissenschaftlich exakten Messung von Sorptionseigenschaften von Holz und Holzwerkstoffen. Holz als Roh- und Werkstoff 16: 118-122. DOI: 10.1007/BF02615506
  • Kollmann F. & Schneider A. 1963: Über das Sorptionsverhalten wärmebehandelter Hölzer. Holz als Roh- und Werkstoff 21: 77–85. DOI: 10.1007/BF02609705
  • Kollmann F., Schmidt E., Kufler M., Fengel D. & Schneider A. 1969: Gefüge- und Eigenschaftsänderungen im Holz durch mechanische und thermische Beanspruchung. Holz als Roh- und Werkstoff 27: 407–425. DOI: 10.1007/BF02604735
  • Korkut S., Aytin A., Taşdemír Ç. & Gurău L. 2013: The transverse thermal conductivity coefficients of Wild cherry wood heat-treated using the ThermoWood method. ProLigno 9(4): 649–683. Online ISSN 2069-7430.
  • Kortelainen S.M., Antikainen T. &·Viitaniemi P. 2006: The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz als Roh- und Werkstoff 64: 192–197. DOI: 10.1007/s00107-005-0063-y
  • Krzesinska M., Pilawa B., Pusz, S. & Ng, J. 2006: Physical characteristics of carbon material derived from pyrolysed vascular plants. Biomass and Bioenergy 30: 166–176. DOI: 10.1016/j.biombioe.2005.11.009
  • Kubojima Y., Okano T. & Otha M. 1998: Vibrational properties of Sitka spruce heat-treated in nitrogen gas. Journal of Wood Science 46: 63–67. DOI: 10.1007/BF00521878
  • Kumaran M.K., Lackey J.C., Normandin N., Tariku F. & Reenen D.V. 2003: Variation in the hygrothermal properties of several wood based building products. Research in Building Physics, Leuven, Belgium, 35–42
  • Laganá R., Dizhbite T. & Telysheva G. 2006: An influence of thermal treatment on surface properties of wood. In: Kurjatko S., Kúdela J. & Laganá R. (eds): Wood structure and Properties ´06, Zvolen 289–291.
  • Lengyel P. 1961: A hazai és nemes nyarak fájának kémiai összetétele. Az Erdő 10(4): 124–128. Teljes szöveg
  • Lin B.-J., Colin B., Chen W.-H., Pétrissans A., Rousset P. & Pétrissans M. 2018: Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum. Journal of Analytical and Applied Pyrolysis 130: 8–18. DOI: 10.1016/j.jaap.2018.02.005
  • Nuopponen M., Vuorinen T., Jämsä S. & Viitaniemi P. 2003: The effect of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology 37: 109–115. DOI: 10.1007/s00226-003-0178-4
  • Okino E.Y.A., Resck I.S., Santana M.A.E., Cruz C.L.S.C., Santos P.H.O. & Falcomer V.A.S. 2010: Evaluation of wood chemical constituents of Hevea brasiliensis and Cupressus decomposed by Gloeophyllum striatum using CP/MAS 13C NMR and HPLC techniques. Journal of Tropical Forest Science 22(2): 184–196.
  • Omidvar A., Schneider M.H. & Van Heinigen A.R.P. 2001: Probing red maple pit membranes pore size at fibre saturation point and oven dry density using polystyrene macromolecule. Document No. IRG/WP 01-40217. International Research Group on Wood Preservation, Stockholm
  • Pásztory Z., Tsalagkas D., Horváth N. & Börcsök Z. 2019: Insulation panels made from thermally modified bark. Acta Silvatica et Lignaria Hungarica 15(1): 23–34. DOI: 10.2478/aslh-2019-0002
  • Patzelt M., Emsenhuber G. & Stingl R. 2003: Colour measurements as means of quality control of thermally treated wood. In: E Van Acker, J., Hill, C. (eds): Proceedings of the 1st European Conference on Wood Modification, 3–4 April 2003, Ghent. Ghent University, Belgium, 213–218.
  • Poletto M., Zattera A.J., Forte M.M.C. & Santana R.M.C. 2012: Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 109: 148–153. DOI: 10.1016/j.biortech.2011.11.122
  • Poletto M. 2016: Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas. Ciencia y tecnología 18(3): 435– 42. DOI: 10.4067/S0718-221X2016005000039
  • Rapp A.O., Sailer M. & Brand K. 2003: Umweltfreundliche Konservierung von Massivholz und Massivholzprodukten für den Außenbereich. Schlussbericht für das BMBF-Projekt 0339862. Bundesforschungsanstalt für Forst- und Holzwirtschaft (BFH), Hamburg.
  • Riyaphan J., Phumichai T., Neimsuwan T., Witayakran S., Sungsing K., Kaveeta R. & Phumichai C. 2015: Variability in chemical and mechanical properties of Pará rubber (Hevea brasiliensis) trees. ScienceAsia 41: 251–258. DOI: 10.2306/scienceasia1513-1874.2015.41.251
  • Samuel O.S., Ramon B.O., Johnson Y.O. 2012: Thermal conductivity of three different wood products of Combretaceae family; Terminalia superb, Terminalia ivorensis and Quisqualis indica. Journal of Natural Sciences Research 2(4): 36–43.
  • Santos J.A. 2000: Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology 34: 39–43. DOI: 10.1007/s002260050006
  • Seborg R.M., Tarkow H. & Stamm A.J. 1953: Effect of heat upon dimensional stabilisation of wood. Journal of Forest Products Research Society 3: 59–67.
  • Sehlstedt-Persson M., Johannson D. & Morén T. 2006: Effect of heat treatment on the microstructure of pine, spruce and birch and the influence on capillary absorption. In: Kurjatko, S., Kúdela, J. & Lagana, R. (eds): Wood Structure and Properties `06, Zvolen, 373–379.
  • Severo E.T.D., Oliveira E.F., Sansígolo C.A., Rocha C.D. & Calonego F.W. 2013: Properties of juvenile and mature woods of Hevea brasiliensis untapped and with tapping panels. European Journal of Wood and Wood Products 71(6): 815–818. DOI: 10.1007/s00107-013-0731-2
  • Severo E.T.D., Calonego F.W., Sansígolo C.A. & Bond B. 2016: Changes in the chemical composition and decay resistance of thermally-modified Hevea brasiliensis wood. PLoS ONE 11(3): e0151353. DOI: 10.1371/journal.pone.0151353
  • Simatupang M.H., Schmidt U. & Kasim A. 1994: Wood extractives of rubberwood (Hevea brasiliensis) and their influences on the setting of the inorganic binder in gypsum-bonded particleboards. Journal of Tropical Forest Science 6(3): 269–285.
  • Shebani A.N., van Reenen A.J. & Meincken M. 2008: The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 471(1–2): 43–50. DOI: 10.1016/j.tca.2008.02.020
  • Shigematsu A., Mizoue N. & Kajisa T., Yoshida S. 2011: Importance of rubberwood in wood export of Malaysia and Thailand. New Forests 41: 179–189. DOI: 10.1007/s11056-010-9219-7
  • Stamm A.J. & Hansen L.A. 1937: Minimizing wood shrinkage and swelling: Effect of heating in various gases. Industrial & Engineering Chemistry 29(7): 831–833. DOI: 10.1021/ie50331a021
  • Stamm A.J., Burr H.K. & Kline A.A. 1946: Staybwood, Heat-stabilized wood. Industrial and Engineering Chemistry 38: 630–634. DOI: 10.1021/ie50438a027
  • Suleiman B.M., Larfeldt J., Leckner B. & Gustavsson M. 1999: Thermal conductivity and diffusivity of wood. Wood Science and Technology 33: 465–473. DOI: 10.1007/s002260050130
  • TenWolde A., McNatt J.D. & Krahn L. 1988: Thermal properiıes of wood and wood panel products for use in buildings. Forest Products Laboratory, Subcontract Number DE-AI05-870R21697
  • Terziev N. & Daniel G. 2002: Industrial kiln drying and its effect on microstructure, impregnation and properties of Scots pine timber for above ground use. Part 2. Effect of drying on microstructure and some mechanical properties of Scots pine sapwood. Holzforschung 56: 434–439. DOI: 10.1515/HF.2002.067
  • Tiemann, H.D. 1920: Effect of different method of drying on the strength and hygroscopicity of wood. The kiln drying of lumber. 3rd ed. J.P. Lippincott Co., Philadelphia, PA. 256–264.
  • Uysal B., Kurt S., Kol H.S., Özcan C. & Yildirim M.N. 2008: Thermal conductivity of poplar impregnated with soma fire retardant. Teknolojí 11(4): 239–251.
  • Vernois M. 2001: Heat treatment of wood in France – State of the art. In: Review on heat treatments of wood. In: Rapp A.O. (ed): Proceedings of special seminar on heat treatments, Antibes, France. Office for official publications of the European communities, Luxembourg Wagenführ R. 2006: Holzatlas. 6., vollständig überarbeitete und erweiterte Auflage Hanser, Carl (Verlag) ISBN 978-3-446-40649-0, 603, 677.
  • Welzbacher C.R. & Rapp O.A. 2002: Comparison of thermally modified wood originating from four industrial scale processes-durability. International Research Group on Wood Protection Doc. Nº 02-40229. Stockholm
  • Welzbacher C.R. & Rapp A.O. 2003: Thermische Verfahren – Verfahrensübergreifender Vergleich. In: 23 HolzschutzTagung der DGfH, Augsburg, 26–27.03.2003. Deutsche Gesellschaft für Holzforschung e.V., München. 97–112.
  • Xu J., Zhang Y., Shen Y., Ki C., Wang Y., Ma Z. & Sun W. 2019: New perspective on wood thermal modification: relevance between the evolution of chemical structure and physical-mechanical properties, and online analysis of release of VOCs. Polymers 11: 1145. DOI: 10.3390/polym11071145
  • Yang H., Rong Y., Chen H., Dong H.L. & Zheng C. 2007: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781–1788. DOI: 10.1016/j.fuel.2006.12.013
  • Zaman A., Alén R. & Kotilainen R. 2000: Thermal behavior of Scots pine (Pinus sylvestris) and Silver birch (Betula pendula) at 200–230 °C. Wood and Fiber Science 32(2): 138–143.
  • Zamora D.S., Wyatt G.J., Apostol K.G. & Tschirner U. 2013: Biomass yield, energy values, and chemical composition of hybrid poplars in short rotation woody crop production and native perennial grasses in Minnesota, USA. Biomass and Bioenergy 49: 222–230. DOI: 10.1016/j.biombioe.2012.12.031
  • Zhou Y., Mingliang J., Ruiqing G. & Xiaoling L. 2007: Rubberwood Processing Manual. Research Institute of Wood Industry Chinese Academy of Forestry, Beijing. CFC/ITTO/72 PD103/01 Rev.4 (I) “Demonstration of Rubberwood Processing Technology and Promotion of Sustainable Development in China and Other Asian Countries”
  • Open Acces - Nyílt hozzáférés

    A cikk teljes terjedelmében szabadon letölthető, és megfelelő forrásmegjelöléssel szabadon felhasználható.

    Javasolt hivatkozás:

    Börcsök Z. és Pásztory Z. (2020): Faanyagok hővezetési tulajdonságainak változása a termikus kezelés hatására. Erdészettudományi Közlemények, 10(1): 17-27. DOI: 10.17164/EK.2020.002

    10. évfolyam 1. szám,
    17-27. oldal

    DOI: 10.17164/EK.2020.002

    Közlésre elfogadva:
    2020. május 11.

    Kapcsolódó cikkek
    a folyóiratban

    1

    A szerzők további cikkei a folyóiratban

    2