Erdészettudományi Közlemények / 10. évfolyam / 1. szám / 29-39. oldal
előző | következő

Kéregalapú hőszigetelő lemez tulajdonságainak javítása

Börcsök Zoltán és Pásztory Zoltán

Kapcsolat a szerzőkkel

Levelező szerző: Börcsök Zoltán

Cím: H-9400 Sopron, Bajcsy-Zs. u. 4.

e-mail cím: borcsok.zoltan[at]uni-sopron.hu

Kivonat

Számos kutatás foglalkozik természetes anyagokból készül szigetelő anyagokkal, közöttük a kéreggel is. A kéregből készült lemezek fizikai és mechanikai tulajdonságai rendszerint rosszabbak az ugyanolyan körülmények között készült faalapú lemezek tulajdonságainál. Ennek a tanulmánynak a célja az, hogy megvizsgálja a Pannónia nyár kérgéből készült hőszigetelő lemez tulajdonságai rövid üvegszál belekeverésével, random elrendezésű üvegszál szövet, valamint üvegszálas háló és üvegszálas szőtt szövet felületre ragasztásával, illetve a felszín alá helyezett üvegszálas háló segítségével javíthatók-e. További vizsgálat során a panelek hővezetését próbáltuk javítani a kéreg forgácsok hőkezelésével. A cél sűrűség 350 kg/m3 volt, az elkészült panelek hővezetése 0,067 és 0,078 W/m·K közötti volt. A megerősítéseknek csak gyenge hatása volt a hővezetésre és a mechanikai tulajdonságokra. A hővezetést elsősorban a sűrűség befolyásolta, bár a nyersanyag előkezelése csökkentette a panelek hővezetését.

Kulcsszavak: fakéreg, hőszigetelés, erősítés, üvegszál, hőkezelés

  • Arslan M.E. 2016: Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Construction and Building Materials 114: 383-391. DOI: 10.1016/j.conbuildmat.2016.03.176
  • Aydin I., Demirkir C., Colak S.& Colakoglu G. 2017: Utilization of bark flours as additive in plywood manufacturing. European Journal of Wood and Wood Products 75: 63–69. DOI: 10.1007/s00107-016-1096-0
  • Bal B.C. 2014: Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Construction and Building Materials 51: 9–14. DOI: 10.1016/j.conbuildmat.2013.10.041
  • Biblis E.J. 1965: Analysis of wood-fibreglass composite beams within and beyond the elastic region. Forest Products Journal 15 (2): 81–88.
  • Biblis E.J. & Carino H.F. 2000: Flexural properties of southern pine plywood overlaid with fibreglass-reinforced plastic. Forest Products Journal 50(1): 34–36.
  • Blanchet P., Cloutier A. & Riedl B. 2000: Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology 34: 11–19. DOI: 10.1007/s002260050003
  • Blankenhorn P.R, Murphey W.K., Rishel L.E. & Kline D.E. 1977: Some mechanical properties of impregnated bark board. Forest Products Journal 27(6): 31–38.
  • Cai Z. 2006: Selected properties of MDF and flakeboard overlaid with fibreglass mats. Forest Products Journal 56(11/12):142–146
  • Chow P. 1976: Properties of medium-density, dry-formed fiberboard from seven hardwood residues and bark. Forest Products Journal 26(5): 48–55.
  • Gao Y., Xu K., Peng H., Jiang J., Zhao R. & Lu J. 2019: Effect of heat treatment on water absorption of chinese fir using TD-NMR. Applied Sciences 9: 78. DOI: 10.3390/app9010078
  • Hill C.A.S. 2006: Wood Modification, Chemical, Thermal and Other Processes; Wiley: England
  • Hurtado P.L., Rouilly A., Vandenbossche V. & Raynaud C. 2016: A review on the properties of cellulose fibre insulation. Building and Environment 96: 170–177. DOI: 10.1016/j.buildenv.2015.09.031
  • Kain G., Barbu M.C., Hinterreiter S., Richter K. & Petuschnigg A. 2013: Using bark as a heat insulation material. BioResources 8(3): 3718–3731. DOI: 10.15376/biores.8.3.3718-3731
  • Kamke F.A. 1989: Thermal conductivity of wood-based panels. In: Hasselman, D.P.H. & Thomas, J.R. (eds): Thermal conductivity 20. Proceedings of the Twentieth International Thermal Conductivity Conference, held October 19–21, 1987, in Blacksburg, Virginia. 249–260. ISBN 978-1-4613-0761-7
  • Kekkonen P.M., Ylisassi A. & Telkki V.V. 2014: Absorption of water in thermally modified pine wood as studied by Nuclear Magnetic Resonance. Journal of Physical Chemistry C 118: 2146–2153. DOI: 10.1021/jp411199r
  • Kizilkanat A.B., Kabay N.; Akyüncü V., Chowdhury S. & Akça A.H. 2015: Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials 100: 218–224. DOI: 10.1016/j.conbuildmat.2015.10.006
  • Kocaefe D., Poncsak S., Doré G. & Younsi R. 2008: Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkstoff 66: 355–361. DOI: 10.1007/s00107-008-0233-9
  • Kol Ş.H. & Sefil Y. 2011: The thermal conductivity of fir and beech wood heat treated at 170, 180, 190, 200, and 212°C. Journal of Applied Polymer Science 121(4): 2473–2480. DOI: 10.1002/app.33885
  • Korkut S., Aytin A., Taşdemír Ç. & Gurău L. 2013: The transverse thermal conductivity coefficients of Wild cherry wood heat-treated using the ThermoWood method. ProLigno 9(4): 649–683. Online ISSN 2069-7430.
  • MacLean J.D. 1941: Thermal conductivity of wood. Heating, piping & air conditioning 13(6): 380–391.
  • Maloney T.M. 1973: Bark boards from four west coast softwood species. Forest Products Journal 23(8): 30–38.
  • Mitzner R.C. 1973: Durability and maintenance of plywood overlaid with fibreglass reinforced plastic. American Plywood Association Laboratory Report No. 119 part 3
  • Mitsui K., Inagaki T. & Tsuchikawa S. 2008: Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy. Biomacromolecules, 9: 286–288. DOI: 10.1021/bm7008069
  • Moradpour P., Pirayesh H., Gerami M. & Jouybari I.R. 2018: Laminated strand lumber (LSL) reinforced by GFRP; mechanical and physical properties. Construction and Building Materials 158: 236–242. DOI: 10.1016/j.conbuildmat.2017.09.172
  • Murphey W.K. & Rishel L.E. 1969: Relative strength of boards made from bark of several species. Forest Products Journal 19(1): 52.
  • Nemli G. & Çolakoğlu G. 2005: Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry 29: 227–230.
  • Osmannezhad S., Faezipour M. & Ebrahimi G. 2014: Effects of GFRP on bending strength of glulam made of poplar (Populus deltoides) and beech (Fagus orientalis). Construction and Building Materials 51: 34–39. DOI: 10.1016/j.conbuildmat.2013.10.035
  • Pásztory Z., Horváth N. & Börcsök Z. 2017a: Effect of heat treatment duration on the thermal conductivity of spruce and poplar wood. European Journal of Wood and Wood Products 75: 843–845. DOI: 10.1007/s00107-017-1170-2
  • Pásztory Z., Mohácsiné R.I. & Börcsök Z. 2017b: Investigation of thermal insulation panels made of black locust tree bark. Construction and Building Materials 147: 733–735. DOI: 10.1016/j.conbuildmat.2017.04.204
  • Pásztory Z. & Ronyecz I. 2013: The Thermal Insulation Capacity of Tree Bark. Acta Silvatica and Lignaria Hungarica 9: 111–117. DOI: 10.2478/aslh-2013-0009
  • Pavel C.C. & Blagoeva D.T. 2018: Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings. PUBSY No. JRC108692 EUR 28816 EN, Publications Office of the European Union, Luxemburg
  • Pedieu R., Riedl B. & Pichette A. 2008: Physical and mechanical properties of panel based on outer bark particles of white birch: Mixed panels with wood particles versus wood fibers. Maderas. Ciencia y tecnología 10(3): 195–206. DOI: 10.4067/S0718-221X2008000300003
  • Pedieu R., Riedl B. & Pichette A. 2009: Properties of mixed particleboards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibres. European Journal of Wood and Wood Products 67: 95–101. DOI: 10.1007/s00107-008-0297-6
  • Place T.A. & Maloney T.M. 1975: Thermal properties of dry wood-bark multilayer boards. Forest Products Journal 25(1): 33–39.
  • Place T.A. & Maloney T.M. 1977: Internal bond and moisture response properties of three-layer, wood-bark boards. Forest Products Journal 27(3): 50–54.
  • Ragland K.W., Aerts D.J. & Baker A.J. 1991: Properties of wood for combustion analysis. Bioresource Technology 37: 161–168.
  • Rowel R.M., Youngs R.L. 1981: Dimensional stabilization of wood in use. Research Note FPL-0243, Forest Products Laboratory, Forest Service, USDA
  • Schiavoni S., D’Alessandro F., Bianchi F. & Asdrubali F. 2016: Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews 62: 988–1011. DOI: 10.1016/j.rser.2016.05.045
  • Seborg R.M., Tarkow H. & Stamm A.J. 1953: Effect of heat upon the dimensional stabilization of wood. Journal of the Forest Products Research Society 3(3): 59–67.
  • Sekino N. & Yamaguchi K. 2010: Carbonizing binderless wood shaving insulation panels for better insulation and durability. Part 1: Relationship between thermal conductivity and carbonizing temperature. Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11–14, 2010, Geneva, Switzerland. Paper IW-3 pp. 8.
  • Stone J.E. & Scallan A.M. 1965: Effect of component removal upon the porous structure of the cell wall of wood. Journal of Polymer Science: Part C 11: 13–25.
  • Suleiman B.M., Larfeldt J., Leckner B. & Gustavson M. 1999: Thermal conductivity and diffusivity of wood. Wood Science and Technology 33: 465–473. DOI: 10.1007/s002260050130
  • Tenwolde A., McNatt J.D. & Krahn L. 1988: Thermal properties of wood and wood panel products for use in buildings. USDA Forest Sevice DOE/USDA-21697/1
  • Tjeerdsma B.F., Boonstra M., Pizzi A., Tekely P. & Militz H. 1998: Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Als Roh-Und Werkstoff 56: 149–153. DOI: 10.1007/s001070050287
  • Tjeerdsma B.F. & Militz H 2005: Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-Und Werkstoff 63: 102–111. DOI: 10.1007/s00107-004-0532-8
  • Veitmans K. & Grinfelds U. 2016: Wood fiber insulation material. Proceedings 22nd Annual International Scientific Conference „Research for Rural Development 2016” 18–20 May, 2016 Vol. 2: 91–98. ISSN 2255-923X
  • Volf M., Diviš J. & Havlíka F. 2015: Thermal, moisture and biological behavior of natural insulating materials. Energy Procedia 78: 1599–1604. DOI: 10.1016/j.egypro.2015.11.219
  • Wangaard F.F. 1964: Elastic deflection of wood-fibreglass composite beams. Forest Products Journal 14 (6):256–260.
  • Windeisen E., Strobel C. & Wegener G. 2007: Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology 41: 523–536. DOI: 10.1007/s00226-007-0146-5
  • Yamauchi H., Pulido O.R., Ma L.F., Miura I. & Sasaki H. 1999: Processing and utilization of sugi (Cryptomeria japonica D. DON) barks – preparation and grading of fibers. European Journal of Wood and Wood Products 57: 150–151.
  • Yemele M.C.N., Blanchet P., Cloutier A. & Koubaa A. 2008: Effects of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. Forest Products Journal 58(11): 48–56.
  • Yin Y., Berglund L. & Salmén L. 2011: Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12: 194–202. DOI: 10.1021/bm101144m
  • Zhou X., Zheng F., Li H. & Lu C. 2010: An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings 42: 1070–1074. DOI: 10.1016/j.enbuild.2010.01.020
  • Zolfagari A.; Behravesh A.H. & Shahi P. 2015: Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers. Journal of Thermoplastic Composite Materials 28(6): 791–805. DOI: 10.1177/0892705713503676
  • Open Acces - Nyílt hozzáférés

    A cikk teljes terjedelmében szabadon letölthető, és megfelelő forrásmegjelöléssel szabadon felhasználható.

    Javasolt hivatkozás:

    Börcsök Z. és Pásztory Z. (2020): Kéregalapú hőszigetelő lemez tulajdonságainak javítása. Erdészettudományi Közlemények, 10(1): 29-39. DOI: 10.17164/EK.2020.003

    10. évfolyam 1. szám,
    29-39. oldal

    DOI: 10.17164/EK.2020.003

    Közlésre elfogadva:
    2020. augusztus 10.

    Kapcsolódó cikkek
    a folyóiratban

    2

    A szerzők további cikkei a folyóiratban

    1