Bulletin of Forestry Science / Volume 13 / Issue 1 / Pages 5-20
| next article

Estimation of spring caterpillar biomass in hungarian deciduous forests from long-term light trap data – what will the insectivorous bird nestlings eat?

Béla Csaba Eötvös, Anikó Hirka, László Gimesi, Gábor Lövei, Csaba Gáspár & György Csóka


Correspondence: Eötvös Csaba Béla

Postal address: 3232 Mátrafüred, Hegyalja utca 18.

e-mail: eotvos.csaba[at]uni-sopron.hu


Numerous recent studies report an alarming decrease in diversity, biomass, or abundance of arthropods in various habitats. Given that they are important food for other organisms, the ecological consequences of such a decline could be severe. We used data from the Hungarian Forestry Light Trap Network to examine whether the spring caterpillar biomass showed any long term (23-58 years) declining trend in oak-dominated forests. Light trap data for 43 selected macrolepidopteran species (suitable bird food in the larval stage) from six different locations were used for the estimation of the total available caterpillar biomass. Time series analyses showed strong year-toyear fluctuations, and over all locations and time windows there was an increasing rather than decreasing trend. The increase found at some locations may suggest increasing herbivore pressure and negative impacts on forest health. We conclude that foliage-feeding macrolepidopteran species with spring-developing larvae did not show a drastic decrease in recent decades. The estimated biomass increase of the caterpillars of some species may have a negative effect on forest health, but a positive effect on the nesting success of birds.

This article is based on the original publication by Eötvös et al. 2021 (No Long-Term Decrease in Caterpillar Availability for Invertivorous Birds in Deciduous Forests in Hungary).

Keywords: broadleaved forest, arthropod abundance, biomass, insectivore, long term trends, light trap

  • Bereczki K., Ódor P., Csóka Gy., Mag Z. & Báldi A. 2014: Effects of forest heterogeneity on the efficiency of caterpillar control service provided by birds in temperate oak forests. Forest Ecology and Management 327: 96–105. DOI: 10.1016/j.foreco.2014.05.001
  • Cleveland W.S. 1979: Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association 74(368): 829. DOI: 10.2307/2286407
  • Conrad K.F., Warren M.S., Fox R., Parsons M.S. & Woiwod I.P. 2006: Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation 132(3): 279–291. DOI: 10.1016/j.biocon.2006.04.020
  • Conrad K.F., Woiwod I.P. Parsons M. Fox R. & Warren M.S. 2004: Long-term population trends in widespread British moths. Journal of Insect Conservation 8(2/3): 119–136. DOI: 10.1023/B:JICO.0000045810.36433.c6
  • Csóka Gy. 1996: Lepkehernyók. Budapest, HU: Agroinform: p. 152.
  • Csóka Gy. 1997: Increased insect damage in Hungarian forests under drought impact. Biologia 52(1–14): 159–162.
  • Csóka Gy., Hirka A., Szőcs L. & Hajek A.E. 2014: A rovarpatogén Entomophaga maimaiga Humber, Shimazu & Soper, 1988 (Entomophtorales: Entomophtoraceae) gomba megjelenése magyarországi gyapjaslepke (Lymantria dispar) populációkban. Növényvédelem 50(6): 257–262.
  • Csóka Gy., Hirka A. Szőcs L. Móricz N. Rasztovits E. & Podor Z. 2018: Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae). European Journal of Entomology 115: 249–255. DOI: 10.14411/eje.2018.024
  • Dangles O. & Casas J. 2019: Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services 35: 109–115. DOI: 10.1016/j.ecoser.2018.12.002
  • Eötvös Cs.B., Hirka A., Gimesi L., Lövei G.L., Gáspár Cs. & Csóka Gy. 2021. No Long-Term Decrease in Caterpillar Availability for Invertivorous Birds in Deciduous Forests in Hungary, Forests 12(8): 1070. DOI: 10.3390/f12081070.
  • Georgiev G., Mirchev P., Rossnev B. Petkov P. Georgieva M. Pilarska D. et al. 2013: Potential of Entomophaga maimaiga Humber, Shimazu and Soper (entomophthorales) for suppressing Lymantria dispar (linnaeus) outbreaks in Bulgaria. Comptes Rendus de L’Academie Bulgare Des Sciences 66(7): 1025–1032. DOI: 10.7546/CR-2013-66-7-13101331-14
  • Gibb J.A. & Betts M.M. 1963: Food and Food Supply of Nestling Tits (Paridae) in Breckland Pine. The Journal of Animal Ecology 32(3): 489. DOI: 10.2307/2605
  • Gilroy J.J., Anderson G.Q.A., Grice P.V., Vickery J.A., Watts P.N. & Sutherland W.J. 2009: Foraging habitat selection, diet and nestling condition in Yellow Wagtails Motacilla flava breeding on arable farmland. Bird Study 56(2): 221–232. DOI: 10.1080/00063650902792080
  • Hajek A.E., Butler L., Walsh S.R.A., Silver J.C., Hain F.P., Hastings F.L. et al. 1996: Host Range of the Gypsy Moth (Lepidoptera: Lymantriidae) Pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in the Field Versus Laboratory. Environmental Entomology 25(4): 709–721. DOI: 10.1093/ee/25.4.709
  • Hajek A.E., Butler L. & Wheeler M.M. 1995: Laboratory Bioassays Testing the Host Range of the Gypsy Moth Fungal Pathogen Entomophaga maimaiga. Biological Control 5(4): 530–544. DOI: 10.1006/bcon.1995.1063
  • Hallmann C.A., Sorg M., Jongejans E., Siepel H., Hofland N., Schwan H. et al. 2017: More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12(10): e0185809. DOI: 10.1371/journal.pone.0185809
  • Hallmann C.A., Zeegers T., Klink R., Vermeulen R., Wielink P., Spijkers H. et al. 2020: Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conservation and Diversity 13(2): 127–139. DOI: 10.1111/icad.12377
  • Hirka A., Szabóky Cs., Szőcs L. & Csóka Gy. 2011: 50 éves az Erdészeti Fénycsapda Hálózat. Növényvédelem 47(11): 474–479.
  • Hlásny T., Trombik J., Holuša J., Lukášová K., Grendár M., Turčáni M. et al. 2016: Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. Journal of Pest Science 89(2): 413–425. DOI: 10.1007/s10340-015-0694-7
  • Holmes R.T., Schultz J.C. & Nothnagle P. 1979: Bird Predation on Forest Insects: An Exclosure Experiment. Science 206(4417): 462–463. DOI: 10.1126/science.206.4417.462
  • Hrašovec B., Pernek M., Lukić I., Milotić M., Diminić D., Franjević M. et al. 2013: First record of the pathogenic fungus Entomophaga maimaiga Humber, Shimazu, and Soper (Entomophthorales: Entomophthoraceae) within an outbreak populations of Lymantria dispar (Lepidoptera: Erebidae) in Croatia. Periodicum Biologorum 115:379–383.
  • Jactel H., Petit J., Desprez-Loustau M.-L., Delzon S., Piou D., Battisti A. et al. 2012: Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biology 18(1): 267–276. DOI: 10.1111/j.1365-2486.2011.02512.x
  • Kirstin A. & Patocka J. 1997: Birds as predators of Lepidoptera: Selected examples. Biologia, 52: 319–326.
  • Klapwijk M.J., Walter J.A., Hirka A., Csóka Gy. Björkman C. & Liebhold A.M. 2018: Transient synchrony among populations of five foliage-feeding Lepidoptera. Journal of Animal Ecology 87(4): 1058–1068. DOI: 10.1111/1365-2656.12823
  • Leather S.R. 2018: “Ecological Armageddon” – more evidence for the drastic decline in insect numbers. Annals of Applied Biology 172(1): 1–3. DOI: 10.1111/aab.12410
  • Leskó K.,Szentkirályi F. & Kádár F. 1994: Gyapjaslepke (Lymantria dispar L.) populációk fluktuációs mintázatai 1963–1993 közötti időszakban Magyarországon. Erdészeti Kutatások 84: 163–176.
  • Leskó K., Szentkirályi F. & Kádár F. 1995: Aranyfarú szövőlepke (Euproctis chrysorrhoea L.) magyarországi populációinak hosszú távú fluktuációs mintázatai. Erdészeti Kutatások 85: 169–185.
  • Leskó K., Szentkirályi F. & Kádár F. 1997: A gyűrűsszövő (Melacosoma neustria L.) hosszú távú (1962–1996) populációingadozásai Magyarországon. Erdészeti Kutatások 86–87: 171–200.
  • Leskó K., Szentkirályi F. & Kádár F. 1998: Araszoló lepkefajok fluktuáció-mintázatának elemzése hosszú távú (1961-1997) magyarországi fénycsapdázási és kártételi idősorokban. Erdészeti Kutatások 88: 319–333.
  • Leskó K., Szentkirályi F. & Kádár F. 1999: A kis téli araszoló hosszú távú (1962–1997) populáció-fluktuációinak jellemzése az erdészeti fénycsapda-hálózat mintavételei alapján. Erdészeti Kutatások 89: 169–182.
  • Losey J.E. & Vaughan M. 2006: The Economic Value of Ecological Services Provided by Insects. BioScience 56(4): 311–323. DOI: 10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2
  • Macgregor C.J., Williams J.H., Bell J.R. & Thomas C.D. 2019: Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nature Ecology & Evolution 3(12): 1645–1649. DOI: 10.1038/s41559-019-1028-6
  • Manderino R., Crist T.O. & Haynes K.J. 2014: Lepidoptera-specific insecticide used to suppress gypsy moth outbreaks may benefit non-target forest Lepidoptera. Agricultural and Forest Entomology 16(4): 359–368. DOI: 10.1111/afe.12066
  • McManus M. & Csóka Gy. 2007: History and Impact of Gypsy Moth in North America and Comparison to the Recent Outbreaks in Europe. Acta Silvatica & Lignaria Hungarica 3: 47–64. DOI: 10.37045/aslh-2007-0004 full text
  • Morse D.H. 2017: The Insectivorous Bird as an Adaptive Strategy. Annual Review of Ecology and Systematics. Annual Reviews 2: 177-200. DOI: 10.2307/2096927
  • Nyffeler M., Şekercioğlu Ç.H., & Whelan C.J. 2018: Insectivorous birds consume an estimated 400–500 million tons of prey annually. The Science of Nature 105(7–8): 47. DOI: 10.1007/s00114-018-1571-z
  • Pagani-Núñez E., Renom M., Mateos-Gonzalez F., Cotín J. & Senar J.C. 2017: The diet of great tit nestlings: Comparing observation records and stable isotope analyses. Basic and Applied Ecology 18: 57–66. DOI: 10.1016/j.baae.2016.11.004
  • Perrins C.M. 2008: Tits and their caterpillar food supply. Ibis 133: 49–54. DOI: 10.1111/j.1474-919X.1991.tb07668.x
  • Pilar s k a D., McManus M., Hajek A.E., Herard F., Vega F.E., Pilarski P. et al. 2000: Introduction of the entomopathogenic fungus Entomophaga maimaiga Hum. Shim. and Sop. (Zygomycetes: Entomophthorales) to a Lymantria dispar (L.) (Lepidoptera: Lymantriidae) population in Bulgaria. Anzeiger Fur Schadlingskunde 73(5): 125–126. DOI: 10.1007/BF02956444
  • Porter J. 1997: Colour Identification Guide to Caterpillars of the British Isles. Macrolepidoptera. London, UK: Viking: p. 276.
  • R Core Team. 2019: R: A Language and Environment for Statistical Computing. https://www.R-project.org/.
  • Sánchez-Bayo F. & Wyckhuys K.A.G. 2019: Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8–27. DOI: 10.1016/j.biocon.2019.01.020
  • Schowalter T.D. 2016: Insects as Regulators of Ecosystem Processes. In: Insect Ecology. pp. 511–537. Elsevier.
  • Schowalter T.D. Noriega J.A. & Tscharntke T. 2018: Insect effects on ecosystem services—Introduction. Basic and Applied Ecology 26: 1–7. DOI: 10.1016/j.baae.2017.09.011
  • Şekercioğlu Ç.H. 2006: Ecological significance of bird populations. In: J. del Hoyo, A. Elliott, & D. A. Christie (eds.): Handbook of the birds of the world. 11: 15–51. Lynx Edicions, Barcelona, Spain: and BirdLife International, Cambridge, UK.
  • Seress G., Hammer T., Bókony V., Vincze E., Preiszner B., Pipoly I. et al. 2018: Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecological Applications 28(5): 1143–1156. DOI: 10.1002/eap.1730
  • Seress G., Sándor K., Evans K.L. & Liker A. 2020: Food availability limits avian reproduction in the city: An experimental study on great tits Parus major. Journal of Animal Ecology 89(7): 1570–1580. DOI: 10.1111/1365-2656.13211
  • Standovár T., Bán M. & Kézdi P. (eds.). 2017: Erdőállapot-értékelés középhegységi erdeinkben – ROSALIA A Duna-Ipoly Nemzeti Park Igazgatóság tanulmánykötetei 9. Budapest, Hungary: Duna-Ipoly Nemzeti Park Igazgatóság: p. 612
  • Szontagh P. 1962: A gyűrűslepke (Malacosoma neustria L.) tömegszaporodása és károsítása tölgyeseinkben, Erdészeti Kutatások 58(1–3): 125–142.
  • Szontagh P. 1975: A fénycsapda hálózat szerepe az erdészeti kártevők prognózisában. Növényvédelem 11(2): 54–57.
  • Tallós P. 1966: A fénycsapdák erdővédelmi jelentősége. Az Erdő 15(3): 134-136. full text
  • Thomas C.D. & Abery J.C.G. 1995: Estimating rates of butterfly decline from distribution maps: The effect of scale. Biological Conservation 73(1): 59–65. DOI: 10.1016/0006-3207(95)90065-9
  • Thomas J.A. 2004: Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis. Science 303(5665): 1879–1881. DOI: 10.1126/science.1095046
  • Török J. 1986: Food segregation in three hole-nesting bird species during the breeding season. Ardea 74: 129–136.
  • Török J. 1990: Resource partitioning among three woodpecker species Dendrocopos spp. during the breeding season. Ecography 13(4): 257–264. DOI: 10.1111/j.1600-0587.1990.tb00617.x
  • Török J. & Tóth L. 1999: Asymmetric competition between two tit species: a reciprocal removal experiment. Journal of Animal Ecology 68(2): 338–345. DOI: 10.1046/j.1365-2656.1999.00283.x
  • Tremblay I., Thomas D., Blondel J., Perret P. & Lambrechts M.M. 2005: The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis 147(1): 17–24. DOI: 10.1111/j.1474-919x.2004.00312
  • Valtonen A., Hirka A., Szőcs L., Ayres M.P., Roininen H. & Csóka Gy. 2017: Long-term species loss and homogenization of moth communities in Central Europe. Journal of Animal Ecology 86(4): 730–738. DOI: 10.1111/1365-2656.12687
  • Wainhouse D. & Inward D.J.G. 2016: The influence of climate change on forest insect pests in Britain. FCRN021: 1–10.
  • Welti E.A.R., Joern A., Ellison A.M., Lightfoot D.C., Record S., Rodenhouse N. et al. 2021: Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nature Ecology & Evolution 5(5): 589–591. DOI: 10.1038/s41559-021-01424-0
  • Zúbrik M., Barta M., Pilarska D., Goertz D., Úradník M., Galko J. et al. 2014: First record of Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) in Slovakia. Biocontrol Science and Technology 24(6): 710–714. DOI: 10.1080/09583157.2014.883362
  • Zúbrik M., Hajek A., Pilarska D., Špilda I., Georgiev G., Hrašovec B. et al. 2016: The potential for Entomophaga maimaiga to regulate gypsy moth Lymantria dispar (L.) (Lepidoptera: Erebidae) in Europe. Journal of Applied Entomology 140(8): 565–579. DOI: 10.1111/jen.12295
  • Zúbrik M., Špilda I., Pilarska D., Hajek A.E., Takov D., Nikolov C. et al. 2018: Distribution of the entomopathogenic fungus Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) at the northern edge of its range in Europe. Annals of Applied Biology 173(1): 35–41. DOI: 10.1111/aab.12431
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Eötvös, Cs. B., Hirka, A., Gimesi, L., Lövei, G., Gáspár, Cs. & Csóka, Gy. (2023): Estimation of spring caterpillar biomass in hungarian deciduous forests from long-term light trap data – what will the insectivorous bird nestlings eat?. Bulletin of Forestry Science, 13(1): 5-20. (in Hungarian) DOI: 10.17164/EK.2023.01

    Volume 13, Issue 1
    Pages: 5-20

    DOI: 10.17164/EK.2023.01

    First published:
    7 June 2023

    Related content


    More articles
    by this authors


    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Eötvös, Cs. B. & Horváth, L. (2018): Changes of groundwater levels in szenta-forest as result of KASZÓ-LIFE project. Bulletin of Forestry Science, 8(2): 17-23.
  • Andrési, R., Janik, G., Fürjes-Mikó, Á., Eötvös, Cs. B. & Tuba, K. (2018): Faunistical studies on coleoptera of tinder conk [Fomes fomentarius (L. ex. Fr.) Kickx.] in Hungary. Bulletin of Forestry Science, 8(2): 71-82.
  • Koltay, A., Fürjes-Mikó, Á., Tenorio-Baigorria, I., Eötvös, Cs. B. & Horváth, L. (2020): Health condition investigation of forests in KASZÓ-LIFE project. Bulletin of Forestry Science, 10(2): 97-108.
  • Eötvös, Cs. B., Tóth, M., Hirka, A., Fürjes-Mikó, Á., Gáspár, Cs., Paulin, M., Lakatos, F. & Csóka, Gy. (2023): Factors influencing the short-distance spread of oak lace bug [Corythucha arcuata Say, 1832)] in hungarian oak forests. Bulletin of Forestry Science, 13(2): 131-144.
  • Csóka, Gy., Hirka, A. & Szőcs, L. (2012): Insect globalization in the Hungarian forests. Bulletin of Forestry Science, 2(1): 187-198.
  • Janik, G., Hirka, A., Koltay, A., Juhász, J. & Csóka, Gy. (2016): 50 years biotic damage in the Hungarian beech forests. Bulletin of Forestry Science, 6(1): 45-60.
  • Csepelényi, M., Hirka, A., Szénási, Á., Mikó, Á., Szőcs, L. & Csóka, Gy. (2017): Rapid area expansion and mass occurrences of the invasive oak lace bug [Corythucha arcuata (Say 1932)] in Hungary. Bulletin of Forestry Science, 7(2): 127-134.
  • Hirka, A., Pödör, Z., Garamszegi, B. & Csóka, Gy. (2018): 50 years trends of the forest drought damage in Hungary (1962-2011). Bulletin of Forestry Science, 8(1): 11-25.
  • Csóka, Gy., Hirka, A., Csepelényi, M., Szőcs, L., Molnár, M., Tuba, K., Hillebrand, R. & Lakatos, F. (2018): Response of forest insects to the climate change (case studies). Bulletin of Forestry Science, 8(1): 149-162.
  • Korda, M., Ripka, G., Hirka, A. & Csóka, Gy. (2022): Rapid spread and presently known distribution of Aceria fraxiniflora (Felt) (Acari: Eriophyoidea) in Hungary. Bulletin of Forestry Science, 12(2): 121-128.
  • Szőcs, L., Melika, G. & Csóka, Gy. (2013): Data on the parasitoid complexes of leaf mining insects on oaks. Bulletin of Forestry Science, 3(1): 251-259.
  • Fürjes-Mikó, Á., Csősz, S. & Csóka, Gy. (2019): Role of red wood ants (Formica rufa group) in forest protection in europe – a literature review. Bulletin of Forestry Science, 9(1): 35-50.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.